
Introduction to CS VBA #1a – introduction-part1 lbabout@iis.p.lodz.pl

MS office offers a functionality of building complex actions and quasi-programs by means of a
special scripting language called VBA (Visual Basic for Applications). In this lab, you will learn
how to use the Macros module and get familiar with basic syntax and formulation of VBA in the
case of Excel. Note that getting acquainted with VBA programming is central for your pair-project.

BASIC MACROINSTRUCTIONS (MACROS)

Exercise 1
MS Office offers a wide variety of built-in macros that can facilitate edition or customization of
tacks in both Excel and Word. All are programmed in VBA but their code is not accessible.
However, it is a good practice to test one of these to get a view on the possibilities offered for future
programming. The Macros that is proposed to be tested in part of Word: the Mail Merge Manager
(MMM). Note that you may find some interest in using such macro for you project. Just to make it
clear: it is expected NOT TO BE USED FOR YOU OWN PAIR-PROJECT!

How to proceed. Very simple:
1. Open a blank document in Word and save it as VBA1_yourname.docx
2. Open a blank document in Excel and save it as VBA1_yourname.xlsx
3. In Excel and first spreadsheet (sheet1. You can rename it “ex1” if you wish), enter some

name of people that you would like to invite, for instance, for Your birthday (e.g. column A:
firstname, column B: last name). Max. 10 entries. Save and go back to word. To remember
the category, write in cell A1, “firstname” and in cell A2, “lastname”. You will see that this
will be also very useful later on.

4. Go back to Word and write some lines of text for your birthday invitation. The purpose of
MMM is to generate X instances of a document in which some fields (e.g. names of invited
persons) will be automatically changed based on the Excel entries.

5. Click now on the Mailings tab, then select Step by Step Mailing Merge Wizard...
a) Choose the type of document you want to create. In our case, select Letters.
b) Click Next: Starting document to move to Step 2. Then, Select Use the current

document
c) Click Next: Select recipients to move to Step 3. This step simply links with the

document where are located the list of interest (in our case names in excel document). So
in the new window, click on Browse... since your list already exists in
VBA1_yourname.xlsx.

d) Select the spreadsheet where are located the data. Also, tick option First row of data
contains column header (see previous point 3). Press OK, then in new window uncheck
any list member that you don't want to use in the final merging document. Press OK.

e) Step 4. Place fields where they will appear in your text, e.g. firstname and lastname. For
that, place the cursor in the appropriate place of you text, then click in the MMM
window on More items... and select the fields.

f) After it is just a matter of preview the results and finish the merging to be ready for
printing or mailing.

As already mentioned, we cannot access to the code that is behind the MMM. Fortunately, this is
not always the case as it is possible in MS Office to record some macros and later on see their
corresponding VBA codes. The 2 next exercises are intended to illustrate such approach.

page 1 of 8

Introduction to CS VBA #1a – introduction-part1 lbabout@iis.p.lodz.pl

Exercise 2

1. Enter the following data to a worksheet (e.g. in sheet2 of VBA1_yourname.xlsx):

Ensure, that the total values are calculated using the SUM function.
2. Formatting procedure:

• select any single cell

• click the Home tab, then click on the Find&Select button in the Editing group . Select

Go To...
• in a Go To dialog choose Special button:

• Select constants option and leave unchecked options Numbers, Logicals and Errors (only
Text is checked):

• click OK
• format the selection as follows:

• rrepeat the steps for Formulas resulting in Numbers and apply the format:

• repeat the steps for Constants - Numbers and apply the format. Then, add the legend (add
new rows and place the legend cells there):

page 2 of 8

special

text

formula

Introduction to CS VBA #1a – introduction-part1 lbabout@iis.p.lodz.pl

Exercise 3
Knowing, how to format the cells, you can start recording a macro.
1. Select the whole worksheet (e.g. pressing Ctrl+A) and then clear the formatting (click on Clear

in the Editing group on Home tab. Select Clear Formats from the list). Delete the three first
rows containing the legend.

2. Macro recording procedure:
• select Macros on the View Tab → Record Macro...
• call the macro with any name (but I propose to give a meaningful name, e.g. FormatTable),

add the description and select “This Workbook” or the name of your file (e.g.
VBA1_yourname.xlsx) from the dropdown list which macro's location:

• click OK
• repeat all the steps performed in the previous exercise
• when finished, choose Stop Recording from the list displayed after clicking on the Macros

button
• in order to test the macro, again remove the worksheet format. Choose View Macros. Select

your macro and press Run.
• Save As your file and change the extension to .xlsm (e.g. VBA1_yourname.xlsm). Why?

Because your file now contains VBA macros (m stands for macro).

Exercise 4
Recorded macro very often needs some modifications. In order to edit the macro, you must find the
worksheet containing it. In our case, we have chosen “this workbook” when creating macros, so it is
enough to open macro dialog, select the macro and press Edit button.
Visual Basic Editor window opens, while the standard MS Excel windows still remains open. If
you want to close the editor, use File menu → Close and return to Microsoft Excel (or just close
the editor).

Before analyzing the code corresponding to the recorded macros and doing quite advanced VBA
operations, let get acquainted with the basic syntax. First of all, you will find in the Annex at the
end of this document tables containing most of the basic VBA syntax and statement structures.

page 3 of 8

description

macro's name

macro's location

Introduction to CS VBA #1a – introduction-part1 lbabout@iis.p.lodz.pl

Most of them will be detailed during the VBA labs. Then, let run few basic macros and create new
ones to practice coding. For that, open the Visual Basic editor if not done yet. In the VBA project
window (left), look at the Modules folder under your excel file. There should be Module1, which
contains the recorded code corresponding to the formatting exercise. Click right on Modules and
select Insert → Module. Module2 should appear. Now, open the text provided as a link in the
webpage and copy the content inside Module2.
Execute provided codes (put cursor in the code and press play button) and follow
instructions.Note the spreadsheet should look like the last illustration of Exercise 2.

Exercise 5
Go now to Module1 where recorded procedures of Exercise 3 are.
The internal frame contains the code of your macro (note that it may look different than the
example shown below). Notice, that the lines prefixed with apostrophe “ ' ” are not interpreted –
they are the comment lines displayed in green (see also Annex). The comments (code
documentation) are very important for the code conservation and maintenance. They also allow to
“switch off” the code fragments that we do not want to execute, but they may be useful later. The
comment explaining the code line meaning should look as follows:

ColorIndex = 5 'changes colour to blue

while the explanation for the whole code block should be placed as a separate line before the block.

Add a few comments:
• find the line:

Selection.SpecialCells(xlCellTypeConstants, 2).Select

add a new line before. Place there your comment (remember about the apostrophe):

page 4 of 8

Introduction to CS VBA #1a – introduction-part1 lbabout@iis.p.lodz.pl

'find and format the cells containing text

• do the same with:
Selection.SpecialCells(xlCellTypeConstants, 1).Select

adding the comment about the number cells
• again, for:

Selection.SpecialCells(xlCellTypeFormulas, 1).Select

add the comment about cells containing formulae resulting in numbers
• find the instruction (the row number may be different):

Rows("1:1").Select

and add a comment above about code block responsible for creating the legend.

The code above shows you some characteristics of VBA programming. One main attribute is the
use of so-called VBA objects that are specific for MS environments, i.e. Word, Excel of even
PowerPoint. For instance, you can see above that Range, Selection or Rows are typical Excel
objects. VBA objects are characterized by attributes (or properties, e.g. Font, Orientation) and
methods (or functions, e.g. Select). When you change their characteristic in VBA, their appearance
and content may change in the MS environment. You will learn more about objects and hierarchy
of objects in the next sections.

Exercise 6
Record macro to clear format and delete the 3 rows of legend. Name it ClearFormat.

page 5 of 8

Introduction to CS VBA #1a – introduction-part1 lbabout@iis.p.lodz.pl

ANNEX – VBA basic syntax

General

Line continuation
character

_ (underscore)

Comments ‘ (single quote) or

REM …

Procedure
Sub routine SUB SubName (ParameterList)

...

END SUB

Function FUNCTION FunctionName (ParameterList) AS type

…

END FUNCTION

Scope PUBLIC

PRIVATE

Variables
Variable names Not a keyword

<= 255 characters

First character must be a letter

Cannot contain a period, space, !, @, #, &, %, or
$

Variable declaration DIM VariableName AS type

Object variables DIM ObjectVariable AS ClassName

e.g., DIM frmAny AS form

Create new objects SET ObjectVariable = NEW ClassName

Frees up memory associated with
objects

SET ObjectVariable = Nothing

Arrays DIM ArrayName(size) AS type

DIM ArrayName(1 TO #) AS type

Constants
Symbolic constant CONST constant_name = value [AS type]

 e.g., CONST path = “d:\”

Operators

page 6 of 8

Introduction to CS VBA #1a – introduction-part1 lbabout@iis.p.lodz.pl

Assignment operator VariableName = expression

SET Obj1 = Obj2

Mathematical +

-

*

/

\ (integer division with rounding)

^

mod (remainder after division)

String & (concatenation)

Comparison =

>

<

>=

<=

<> (different than)

Logical And

Or

Not

Conditional control
If … Then … Else IF condition THEN

 statements executed under true condition

[ELSE

 statements executed under false condition

END IF]

Select Case SELECT CASE test-expression

 CASE expression-list-1

 statement-block-1

 …

 CASE expression-list-n

 statement-block-n

END SELECT

Loop

page 7 of 8

Introduction to CS VBA #1a – introduction-part1 lbabout@iis.p.lodz.pl

For … Next FOR counter = start TO end [STEP increment]

 statements

NEXT

For Each … Next

(a collection of
objects)

FOR EACH item in collection

 statements

NEXT item

With … End With

(a single object)

WITH object

statements accessing the properties/methods of the
object

END WITH

Do While … Loop DO WHILE condition

 statements executed as long as the specified condition is
true

LOOP

Do Until … Loop DO UNTIL condition

 statements executed until the specified condition is true

LOOP

Unconditional control
GoTo GOTO label

…

…

label:

Exit a procedure EXIT

Exit a For loop EXIT FOR

Exit a Do loop EXIT DO

page 8 of 8

