
Introduction to CS VBA #3 – Userforms lbabout@iis.p.lodz.pl

Without GUI, your program is like nothing. Like in other modern languages, VBA allows you to
create interface with which you user will interact. So this lab is about introducing popular VBA
form objects, how to interact with them, but most importantly, how to manage again Word and
Excel actions. The lab introduces new Word objects, but also shows you how it is possible inside
one VBA code to create the interaction between different MS applications (e.g. Word and Excel).
The MSDN library is good information website to get deeper in VBA language and the (user)forms
if you get stuck:
https://msdn.microsoft.com/enus/library/office/ee814735(v=office.14).aspx

INTRODUCTION: VBA userforms
A userform is a synonym for Graphical User Interface (GUI). In Word or Excel, you access to it by
opening Visual Basic Editor. If not direct access, create empty macro and edit it to open Visual
Basic Editor. Then, on the left panel, you see the current structure of the application. In your project
(VBA3_yourname .docm) (remember when you start reading or working with Word document to
rename it ASAP VBA3_yourname.docm; again choose the right file extension from drop-down
menu, i.e. Macro-enabled extension), click-right on ThisDocument and select Insert → Userform .
The following template will open (this is called the Object view). Note the Window Properties
(bottom left) that shows you default properties/attributes of the selected/inserted object (here shows
Userform properties) set at Design time.

1/10

Introduction to CS VBA #3 – Userforms lbabout@iis.p.lodz.pl

And the one below is the one you have now to design. It contains many Control objects: two
ListBoxes, 4 CommandButtons (3 enabled, 1 disabled at design time), 1 TextBox, 3 Labels, 1
Frame in which are inserted 2 OptionButtons and 2 CheckBoxes.

However, to help design the full code, here is a sequence of actions illustrated with screenshots.

Action 1 (initialization):At runtime, the Userform is initialized and it looks like below before any
action has been performed by the user (so you see the left ListBox is filled with some data).

2/10

Introduction to CS VBA #3 – Userforms lbabout@iis.p.lodz.pl

Action 2 (selection): when the user selects an item from the left ListBox and click the “>>”
CommandButton, two actions occur:

1. the right listbox is populated with the selected items, which are removed from the left
listbox

2. The commandbutton “Create/update table” is enabled (property Enabled set to True)

Action 3 (create table): when the user clicks the “Create/update table” button, 3 actions occur:
1. a table of 2 columns and a N rows, which corresponds to the number of selected rubrics is

added to the blank Word document.
2. The objects (OptionButtons and checkboxes) in the frame “Format table” are enabled for

interaction.
3. The commandbutton “Fill table with Excel data” is enabled for interaction.

Action 4 (Fill table): when the commandbutton “Fill table...” is pressed/clicked, the data located
in the column “B” of Excel document are added in the Word table for the corresponding categories,
provided it is verified that a data exists for such item.

3/10

Introduction to CS VBA #3 – Userforms lbabout@iis.p.lodz.pl

Action 5 (add new rubric): when a new rubric is entered in the TextBox, the commandbutton
“Add rubric” is enabled. When the button is clicked, 2 actions occur:

1. the item is added to the left listbox
2. an input box is opened and ask for the corresponding data to be added automatically to

Excel database for the new rubric (rubric also added in Excel as last category in column
“A”).

Action 6 (format table): choice of a table with or without borders can be chosen from either
selected OptionButtons “Table with border” or “Table without border”. Also, the table can have the
first column bold or its text in red font if user chooses to click on the corresponding checkboxes.

4/10

Introduction to CS VBA #3 – Userforms lbabout@iis.p.lodz.pl

Exercise 1: prepare Userform

Prepare your project so as it looks like the one above:
• Open a blank word document and save it As :VB3_yourname.docm
• Open Visual Basic Editor and insert empty Userform
• Add the objects mentioned above. Whenever you insert object, change its default name in

the Properties window to something meaningful, e.g. Lbinit instead of ListBox1 for the left
ListBox in the Userform, or CBSel instead of CommandButton1 for top CommandButton
on Userform. Change also the Captions as displayed on the Userform. The table below will
help you setting (almost) everything.

• The CommandButton with displayed caption “Add rubric” should have property Enabled
set to False.

• Don't forget to often save your file.
• If you want, you can use another color background for the userform or commandbuttons.

Also, the position of all objects can be changed. Make your display unique from other
students! What is important is that the set of actions is done correctly.

• Create Excel file VB3_yourname.xlsx (save it in same folder as .docm file) and enter the
data shown in action 4 above (replace data in column B with the data of your choice if you
wish).

Control Name Caption / remark

ListBox ListInit Left listbox in Userform

ListBox ListChoice Right listbox in Userform

CommandButton CBSel >>

CommandButton CBCreateTBL Create/update table

CommandButton CBFillTBL Fill table with Excel data

CommandButton CBaddRub Add rubric

Label Label1 Initial List

Label Label2 Selected rubrics

Label Label3 New rubric

TextBox TBadd

Frame Frame1

OptionButton OBBorderYes Table with borders

OptionButton OBBorderNo Table with no border

Checkbox CBoxBold First column is bold

Checkbox CBoxFTCol Font color is red

5/10

Introduction to CS VBA #3 – Userforms lbabout@iis.p.lodz.pl

VBA TOOLBOX OBJECTS – PROPERTIES, METHODS AND
EVENTS

So far, you could noticed that we can changed some properties of objects at design time(e.g.
Caption, Enabled...). Of course, we can changed them also at runtime, that is when the program is
executed. For instance, you can easily understand that we cannot add a new rubric to our small
Excel database before the name of the rubric is entered in the TextBox. When a name is entered,
then the CommandButton is enabled (so its property value set to True). This can only be done at
runtime, because it depends on the user's action/interaction with the GUI. This actually introduces a
new functionality of Control objects: as normal VBA objects, they are represented by attributes and
methods. However, another functionality is Events: whenever the user will interact with a control
(e.g. Click on it (mouse left/right click), drag-drop an object on it, type something in it...), an action
of block of statements will be executed. It looks like a procedure structure, except that it is bounded
to specific user actions. We will see that all other this lab.

Exercise 2: get ready with action 1
The action 1 is about Initializing the Userform. To make it appear in your code section, double-
click anywhere on the free space in the form. A template Private Sub UserForm_click() should be
added. This is not the Event we are interested in (we will not click on the form!). However, what is
important is to look at the top of the form module.

You see that the right combo box shows all possible Events associated with the control shown on
the left combo box. Click on Initialize and the template will be added to your code.
More than opening the Userform and make it accessible to the end-user, this event contains a set of
important codelines to be declared inside its body part:

• the i tems in ListInit are added. This is done by cal l ing the method
ListInit.AddItem string_variable (e.g. ListInit.AddItem “Firstname”)

• CommandButtons CBCreateTBL, CBFillTBL, CBaddRub and OptionButtons/Checkboxes
in Frame1 are disabled (their Enabled property set to False)

Run your project to see if it looks like the screenshot shown under action 1. Don't forget to save
your project!

6/10

Introduction to CS VBA #3 – Userforms lbabout@iis.p.lodz.pl

Exercise 3: realize action 2

Action 2 introduces more how to handle Listboxes. When you look at the action description, the
click action on the commandbutton CBSel (CBSel_click) gives the feeling that an item from
ListInit is moved to ListChoice. Actually, three main actions occur:

1. An item in ListInit is selected. We can track the index of the item by calling the property
ListIndex. If an item has been selected, its index value is automatically assigned to
ListIndex, otherwise ListIndex is set to -1.

2. We copy the item value to the right ListBox ListChoice. This is done by again calling the
AddItem method, but string_variable is replaced here by ListInit.List(ListInit.ListIndex).

3. The selected item is removed from ListInit by calling the RemoveItem(Index) method,
where Index is replaced again by ListInit.ListIndex.

Another action is executed when calling CBSel_click, that is the commandbutton CBCreateTBL is
enabled.

Apply the instruction above (first double-click on the CBSel button to automatically include the
template of CBSel_click to the Code window). Check the value of ListIndex and take decision: if
-1, set the index value to 0 so as always the first element in the item list is selected (i.e. item
“Firstname”). It is highly advised to declare a variable to store the value of the item index.
Run the project, click on few ListInit items and the CBSel button sequentially and see if the item
movement is simulated correctly.

Note: A ListBox in its standard form looks like a 1D array, where the first index value is 0. We can
easily know how many items are in the list by calling the ListCount property. The value is
returned by the property List(index) for the given index value: 0- first item; (ListCount-1)- last
item in list.

Exercise 4: realize action 3

Action 3 corresponds to the CBCreateTBL_click event. When such event occurs, following
actions occur:

• The content in the Word document is deleted, using the statement
ActiveDocument.Range.Delete

• Add table object to document using following method
Set TB=ActiveDocument.Tables.Add(Range,NumRows,NumColumns)
Declare a Table object as a module-level object variable (below we call it TB). Set the
Range variable empty by using ActiveDocument.Range(0,0). The number of rows
corresponds to the number of selected items in ListChoice and the number of columns equal
2.

• Insert in the first column the selected rubrics of ListChoice using Table method
TB.Cell(Rowindex,Columnindex).Range.Insertafter string_variable
Use loop to insert the rubric names, Rowindex being the variable to be iterated.
Optional: you can format the table so as the column widths fit the cell content. For that, use
the following method
TB.AutoFitBehavior (wdAutoFitContent)

• CommandButton CBAddRub and control objects in Frame1 are enabled for interaction

7/10

Introduction to CS VBA #3 – Userforms lbabout@iis.p.lodz.pl

Create the VBA code corresponding to the above actions and see the result. If you have the Word
document in the background, you can see if the first column of the table is filled with rubric items.
Of course, save your project before execution. We never know what can happen!

Exercise 5: action 4 or communication between Word and Excel
applications

The second step of the table filling (2nd column) consists in accessing Excel data and for the selected
items, get the corresponding elements from Column B. This involves that Excel objects are declared
in the VBA project. Because the current environment is driven by the Word application, some
adjustment needs to be performed. First, you need to allow your project to access Excel objects. For
that, click on the Tools tab in the VBA editor and select References...Then click on the checkbox
“Microsoft Excel Object Libraries”.
Having this setting done, your are ready to invoke Excel objects in your code. Since, you will have
to access data from Excel spreadsheet, you will need to open your Excel document created in
Exercise 1. To do so, invoke the following code. Preferably, write it in the UserForm_Initialize
event (then your Excel document will be opened when Userform is loaded/created).

Dim path As String
' Open Excel and workbook where data are
path = CurDir 'always good practice to have files in same folder
' But in any case, retrieve it.
path = path & "\VBA3_yourname.xlsx" 'replace yourname accordingly
Set xlapp = CreateObject("Excel.Application") 'Launch Excel
xlapp.Visible = True 'make it visible on screen
Set wrkbk = xlapp.Workbooks.Open(path) 'Open Excel file defined by variable path

You will need also to create 2 Excel objects: xlapp and wrkbk, preferably as module-level
variables. However, to not confuse the VBA interpreter, declare them with data type starting with
Excel:
Dim xlapp As Excel.Application
Dim wrkbk As Excel.Workbook

The Excel document being opened, most of the current action 4 is linked with clicking on the
commandbutton CBFillTBL. By doing so, the following code will be executed:

• for each item of the first column of the table, you need to check if it is present in the Excel
spreadsheet (column “A”). Because the item can be composed of more than 1 word (e.g.
“Marital status”), you need to concatenate these words into a string variable to make the
string comparison possible with Excel data. This concatenate can look as follows

TB.Cell(i, 1).Select 'select a cell of the first column of the table
tpnw = Selection.Range.Words.Count – 1 'calculate number of words, always 1 more
'for some reason
str1 = "" 'initialize str1 variable with empty string
For k = 1 To tpnw

str1 = str1 & Selection.Range.Words(k) 'do concatenation
Next k

• Compare each string with the ones in column “A” of the Excel document. If you use a For
loop to check all strings, you will need to know what is the index of the last row of the data
range. For that the following code does the job

8/10

Introduction to CS VBA #3 – Userforms lbabout@iis.p.lodz.pl

Set sh = wrkbk.Worksheets(1) 'assume worksheet object sh is declared
r = sh.Range("A1", sh.Range("A1").End(xlDown)).Rows.Count

• Using strcomp(string1,string2)), one can check if the selected rubric is in the database to
retrieve the corresponding data. Remember that cell data can be easily retrieved in Excel
using the Cells object, e.g. sh.Cells(i,2).Value

Include and modify if necessary the codes above and execute the project action by action to see if
the (first) final result of filling the table in Word works!

Exercise 6: allowing adding new rubric and data (action 5)

The Textbox TBadd is central to this action. When a text of a new rubric (e.g. “Email address”) is
entered in the textbox (so its content is Changed and is stored in the property Tbadd.Text), the
commandbutton CbaddRub is Enabled. Then, when clicked, the new item is both added to
ListInit and in the first available cell in Column “A” (so below the last element of the column. Its
index value should be calculated. However you know the index of the last element, since calculated
for action 4. So peace of cake!). Furthermore, as described earlier, you should use an Inputbox call
to ask the user about the corresponding data (e.g. a valid email address) that is directly assigned to
the Excel document. The corresponding code of the latter action is:
sh.Cells(index, 2) = InputBox("enter data for new rubric " & sh.Cells(index, 1))
where index stands here for the row index where the data is entered.

The hardest stuffs are behind you. That shouldn't take you too long to do this task!

Exercise 7: aesthetic Table formatting to understand how
OptionButtons and CheckBoxes work (action 6)

In the Frame Frame1 are 2 new types of Control objects: OptionButton and Checkbox. While any
of the Checkboxes can be clicked, only one OptionButton can be clicked at design/runtime. You
will notice this when you will run the program that you cannot have both OptionButtons selected.

We use in this project the option of turning On/Off the borders of the Table in the Word document.
For that, we can simply set the ColorIndex of the Borders() property set to wdBlack (On) or
wdWhite (Off). Borders take input arguments corresponding to the type of line
(left/right/top/bottom border of edges, horizontal/vertical for inner borders), which are popping out
when the left bracket “(“ is typed.

In the case of the checkboxes when they are selected, the text will be red
(TB.Range.Font.ColorIndex = wdRed) and the font of the 1st column will be bold

Private Sub CboxBold_Click()
TB.Range.Columns(1).Select
Selection.Font.Bold = True
End Sub

A bit is given. Do the rest! And Test!

9/10

Introduction to CS VBA #3 – Userforms lbabout@iis.p.lodz.pl

Exercise 7: shut down!!!!!!

As you have initialized some variables when the Userform was executed, you can also perform
some actions when the application is terminated. For instance, it is a good practice to remove
created objects from memories using the Set ObjectName=Nothing statement and also to close
Excel, since only the result in Word interests us (but we can also check if new data has been added
to Excel as well, so we can decide to keep it opened). An example of code could look like this:

Private Sub UserForm_Terminate()
xlapp.Quit
Set xlapp = Nothing
Set TB = Nothing
End Sub

'--THE END-------------------------------

R E M A R K : I F Y O U M A N A G E D T O C O M P L E T E T H I S
LABORATORY AND UNDERSTOOD ALMOST EVERYTHING
THEN I AM CONFIDENT THAT YOU WILL SUCCEED WITH YOUR
PAIR-PROJECT. IN ANYCASE, YOU WILL NEED TO LEARN BY
YOURSELVES ANY TOPICS NOT COVERED BY THE THREE VBA
LABS.

10/10

	INTRODUCTION: VBA userforms
	Exercise 1: prepare Userform

	VBA TOOLBOX OBJECTS – PROPERTIES, METHODS AND EVENTS
	Exercise 3: realize action 2
	Exercise 4: realize action 3
	Exercise 5: action 4 or communication between Word and Excel applications
	Exercise 6: allowing adding new rubric and data (action 5)
	Exercise 7: aesthetic Table formatting to understand how OptionButtons and CheckBoxes work (action 6)
	Exercise 7: shut down!!!!!!

